Posgrado Alumnos Tutores Admisión Cursos y Tópicos
Cursos y Tópicos
Aspectos generales
Título: Estabilidad y complejidad de los sistemas biológicos. El caso de las epidemias y el microbioma humano
Programas de posgrado o planes de estudio en donde se ofertará adicionalmente:
Doctorado en Ciencias Biológicas
Doctorado en Ciencias Bioqupimicas
Doctorado de la Facultad de Medicina
Área del conocimiento: Ecología y biología evolutiva
Semestre: 2024-2
Modalidad: Curso fundamental
Horario: Martes y Jueves de 10 AM a 12:30 PM
No. sesiones: 30
Horas por sesión: 2.5
Total alumnos PDCB: 20
Total alumnos: 20
Videoconferencia: Si
Lugar donde se imparte: Laboratorio de Biología Teórica, Instituto de Investigaciones Biomédicas, Circuito Interior
Informes: marcojose@biomedicas.unam.mx
Métodos de evaluación
MÉTODO PORCENTAJE NOTAS
Exámenes: Un examen final 20%
Participación en clase 60%
Presentación de un proyecto 20%
Contribución de este curso/tópico en la formación del alumnado del PDCB:
El alumno aprenderá a modelar fenómenos biológicos a nivel molecular, poblacional y de organismo.
Aprenderá a analizar si un sistema es estable y qué tipo de estabilidad tiene el sistema. Se enseñará cómo estudiar la ecología de poblaciones de la microbiota.
Se enseñarán varias metodologías: Entropía multivariada para analizar expresión genética e interacciones proteína-proteína en distintos tipos de cáncer. Proteoma antes del Último Ancestro Universal. Métodos Bioinformáticos para la modelación estructural de proteínas y RNA y Evolución del SARS-CoV-2
Profesor (a) responsable
Nombre: José Valenzuela Marco Antonio
Teléfono: (55) 56 22 38 94
Email: marcojose@biomedicas.unam.mx
Profesores (as) participantes
PARTICIPANTE ENTIDAD O ADSCRIPCIÓN SESIONES
JOSÉ VALENZUELA MARCO ANTONIO
Responsable
Instituto de Investigaciones Biomédicas
Introducción
El objetivo del curso es enseñar los Fundamentos de la Teoría de Sistemas Dinámicos y Complejos aplicables a fenómenos biológicos. Los procesos biológicos son sistemas no lineales que conducen a lo que se llama sistemas complejos. En esencia todos los fenómenos biológicos son estocásticos y no lineales y por lo tanto es necesario entender la matemática correspondiente para poder modelarlos. En la actualidad, la literatura científica está inundada de modelos novedosos sobre la naturaleza de las dinámicas no lineales de sistemas biológicos. Se enseñará cómo plantear un modelo matemático de Biología de Poblaciones y Epidemias. Un tópico nuevo que incluye este curso es estudiar la Complejidad y la Estabilidad de la Microbiota. Se enseñará cómo manejar redes de Proteína-Proteína en distintos tipos de cáncer. Se enseñará cómo usar Métodos Bioinformáticos para estudiar la evolución de proteína y de RNA.
Requisitos: Cálculo diferencial e integral; Álgebra Lineal; Ecuaciones Diferenciales Ordinarias. La matemática será explicada con detalle y se asumirá que el estudiante domina la biología no la matemática.
NOTA: A los alumnos que lo soliciten se les facilitará un material de apoyo correspondiente a estos temas.
Temario
1. Teoría de Sistemas dinámicos (Marco A. José). Once sesiones de 2.5 horas
cada una.
I Modelos matemáticos y estabilidad
Conceptos básicos; Sobre la importancia de ser No lineal; Puntos fijos; Análisis lineal de estabilidad; Soluciones de ecuaciones diferenciales en la computadora (lineales, no lineales, sistema de ecuaciones diferenciales); Sistemas continuos y sistemas discretos.
2. Bifurcaciones
Definiciones; Tipos de bifurcaciones: de silla, transcríticas, subcríticas, de Hopf; El plano Beta-Gamma
3. Definiciones; Sistemas conservativos; Sistemas reversibles; Ciclos límite.
4. Dinámica de poblaciones; Extinción de poblaciones; Modelos epidemiológicos
SIR y SEIR(S).
5. Mapeos en una dimensión
6. La ecuación logística; Puntos fijos y telarañas;
7. Matrices aleatorias y Método Monte Carlo para estudiar: Complejidad y Biodiversidad de la Ecología de los microbiomas.
Se proporcionarán y se utilizarán programas computacionales en Mathematica y Matlab.
APLICACIONES EN BIOLOGÍA
1. Dr. Angel Juárez Flores: Entropía multivariada para analizar expresión genética
e interacciones proteína-proteína en distintos tipos de cáncer. Cuatro sesiones de 2.5 horas cada una
2. Dra. Miryam Palacios-Pérez: Proteoma antes del Último Ancestro Universal.
Cuatro sesiones de 2.5 horas cada una. Métodos Bioinformáticos para la modelación estructural de proteínas y RNA. Cuatro sesiones de 2.5 horas cada una.
3. Dra. Georgina López-Cortés: Evolución del SARS-CoV-2: Dos sesiones de 2.5 horas cada una
Bibliografía
Referencias:
1. R. Liu et al. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci Rep., 2 (2012) 813. doi:10.1038/srep00813.
2. Feigenbaum, M.J. (1983). Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 7, 16-39.
3. A. Juarez-Flores, M. V. José. Multivariate Entropy Characterizes the Gene Expression and Protein-Protein Networks in Four Types of Cancer. Entropy, 20 (2018) 154. doi:10.3390/e20030154.
4. Juarez-Flores, A. et al. (2021). Novel gene signatures for stage classification of the squamous cell carcinoma of the lung. Scientific reports, 11(1), 4835. https://doi.org/10.1038/s41598-021-83668-1
5. Palacios-Pérez M & José MV (2019); Palacios-Pérez M, José MV. The evolution of proteome: From the primeval to the very dawn of LUCA. Biosystems. 2019 Jul;181:1-10. doi: 10.1016/j.biosystems.2019.04.007.
6. Prosdocimi F, et al. (2020). The Ancient History of Peptidyl Transferase Center Formation as Told by Conservation and Information Analyses. Life (Basel) 5;10(8):134. doi: 10.3390/life10080134.
7. López-Cortés G.I., et al. Neutral evolution test of the spike protein of SARS-CoV-2 and its implications in the binding to ACE2. Scientific Reports 2021.PMID: 34552110.
8. López-Cortés GI et a. (2022). The Spike Protein of SARS-CoV-2 Is Adapting Because of Selective Pressures. Vaccines (Basel) 10(6):864. doi: 10.3390/vaccines10060864.
9. May RM (1972) Will a large complex system be stable? Nature 238:413–414.
10. May RM (2001) Stability and complexity in model ecosystems.
Descargar en PDF
Doctorado en Ciencias Biomédicas UNAM.
Unidad de Posgrado Edificio B Primer Piso
Ciudad Universitaria, CDMX, México.
Tel: (01 52) 55 5623 7001